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STAB IL lTY OF CONSTANT-GAIN SYSTEMS 
WITH VECTOR FEEDBACK 

SUMMARY 

Multivariable feedback systems can be divided into two classes: one 
in which all loops can be opened with a single node, and one in which this is 
impossible. The stability of the latter, denoted here a s  vector feedback, is 
analyzed for the class of constant-gain (l inear and time-invariant) systems. 

The state-space and the. controllability and observability concepts are 
discussed in connection with the proposed stability analysis that permits drastic 
dimensional reductions for a vector feedback problem. The stability of any 
constant-gain system can thus be analyzed in the frequency domain with a single 
Nyquist plot. The analysis considers the total system with loops closed, a 
disturbance vector a s  input, and the feedback vector a s  output. A l l  constant-
gain systems a r e  shown to be decomposable into stable subsystems in which 
the degree of the decomposition determines the dimensions. The maximum 
decomposition results in the state-space approach, which is the limit case. 

The method is demonstrated with the stability analysis of the pogo 
phenomenon, an oscillatory interaction between the propulsion and the structure 
of a space vehicle. This problem, with eigenvalues over a hundred, was 
drastically but' rigorously reduced to a stability analysis of a 4 by 4matrix, 
which finally was evaluated with one Nyquist plot over a 2- to 30-Hz frequency 
range in which resonances occurred at an average density of one resonance 
pe r  1-Hz frequency interval. 

INTRODUCTION 

Vector feedback is defined here a s  a multivariable feedback loop that 
cannot be opened with a single node. Such systems a r e  not necessarily built 
by design, but can be encountered a s  outgrown secondary effects a s  exemplified 
by the pogo phenomenon on large liquid propellant rockets in  which the propul­
sion's main function is to propel the rocket; however, longitudinal vibrations 
can be sufficiently amplified by structural resonances such that propellant 
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pressures  may result in appreciable thrust  oscillations, which in turn could 
keep the vibrations going in a regenerative fashion. This occurred with the 
Atlas, Thor, Titan, and Saturn V space vehicles [ 1-IO]. The Saturn V case 
was also complicated by an independent motion of two thrust groups such that 
it became impossible to open all loops with one node. Both the first and second 
stages have a cluster of five engines in which the center engine is one thrust 
group, and the four outboard engines are the other. These cases can be class­
ified as a pogo phenomenon with vector feedback [ ii J . More details are 
discussed later when the proposed stability analysis technique is demonstrated. 

The complexity of vector feedback often prevents rigor from penetrat­
ing the maze of applications even though progress has been made in the area of 
multivariable constant-gain systems. Two of the major contributions a r e  the 
state-space approach [ 12-22] and Kalman's controllability and observability 
( C&0) concept [ 23 3 . The C& 0 brought the black box approach (input/output 
representation of a system) into the proper perspective, but it was not designed 
to produce stability cri teria.  

The state-space approach has advanced modern control theory; a t  least 
the constant-gain systems seem to be understood. However, the state-space 
formulation has not developed into a practical design tool in most engineering 
areas and the frequency domain methods a re  still very much in use. This 
situation evolved from difficulties in fully understanding the problem area and 
the tempting fact that frequency domain methods work very efficiently. Many 
authors [24-28] explored the frequency domain methods for the stability analysis 
of multivariable systems with partial success. The results range from relatively 
limited applications to many confusing possibilities without producing a gener­
ally applicable and simple technique. Recent papers by Chen [29-301 give a 
rigorous treatment of controllable and observable multivariable feedbacK systems 
in which stability is evaluated with one Nyquist plot of a determinant and the 
least common denominator of all minors of a transfer function matrix. Chen's 
method is rather complicated and therefore is less suitable for multivariable 
systems of relatively high order. In particular, the simple case of stable matrix 
elements was considered a s  a special. situation. 

The method outlined here  attempts to avoid the difficulties of other 
techniques and takes full advantage of a building block approach in which the 
blocks are stable subsystems. The case of stable matrix elements is shown 
to be generally applicable. The method considers the theoretical foundation of 
the state space and the C&O concepts and gives a simple proof based on the 
following strategy: 
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2. 


3. 

4. 

5. 

All constant-gain systems decompose into stable subsystems. 

The total system is analyzed with all loops closed, a disturbance 
vector as input, and a feedback vector as output. 

Matr ix  operations are available, preserving the stability of sub­
systems , while permitting any desirable decomposition. 

The stability of all looping connections are described by the system 
determinant, which is preferably evaluated with one Nyquist plot. 

A l l  noncontrollable and nonobservable subsystems are stable. 

STATE SPACE 

The state-space representation illustrates certain points and steps 
taken in the following sections. The dynamic behavior of any constant-gain 
system can be described by a first-order vector differential equation with 
constant coefficient matrices. This paper uses variables in row vector 
form, which transposes matrices of other common notations. The row vector 
form was selected because it best resembles mappings and flow diagrams. 

z = y c .  ( 2 )  

The solution of equation ( I )  is 

t 
y (0 )  exp [At] + UB exp [ A ( t  - T ) ]  dT = y. ( 3 )

0 

The state-space formulation (equations ( I )  and (2)) assumes the 
existence of a state vector (y) that completely describes the interior state of 
a system; this is often not easily verified unless the internal structure of the 
system is known. The input, u, and the output, z ,  are in general only partially 
related to the state vector, y; consequently, input and output measurements do 
not always represent the state y o r  the total system. This is directly 
related to the controllability and observability concept. 
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Matrices A, B, and C are constant; the exponential matrix functions 
exp [At] and exp [ A (T-r) ]  are time dependent and are denoted a s  state tran­
sition matrices (equation (3)  ) . The stability depends on the transition matrix 
which must be evaluated (for example, by obtaining the eigenvalues of the 
matrix A( IA - AI 1 = 0) ) . The matrix A can then be presented by a similarity 
transformation TJT'l, which also changes the transition matrix exp r At1 
= T {exp[ Jt]} T-' where J is the Jordan canonical form. The function exp [ Jt]  
is now readily reduced to a matrix with exponential functions exp (h.t) (and/or

1 

their derivatives) as elements. Stability prevails if all eigenvalues h. have 
1 

negative real parts, meaning that the state y approaches zero from any initial 
state, y( 0) , when time grows unlimited and when the input u is zero (equa­
tion ( 3 )) . 

Thus, the state-space method led directly to a stability criterion without 
leaving the time domain; perhaps an ear l ier  adoption centuries ago would have 
severely curtailed the popularity of differential operators. However, eigen­
values are relatively difficult to obtain for large-order systems, especially 
the nonconservative type; therefore, it appears worthwhile to explore other 
avenues, such as the frequency domain approach. 

We now turn to the Laplace transform of equations ( 2 )  and ( 3 ) .  

y(  0 )[ SI-A] + UB [ SI-A] -* = y ( 4) 

YC = z. ( 5) 

The transformed variables a re  U, Y ,  and Z ;  input U and output Z a r e  
vectors o r  scalars,  and state Y is a vector. Initial state y( 0) and input U a r e  
mapped by the matrix, [ SI-A] - I ,  into state Y, which again is mapped into the 
output Z (Figs. 1 and 2). 

Figure 1results from the Laplace transform of equation (1). Note that 
the state-space case is a typical vector feedback situation. Another flow diagram 
results from equations (4)and ( 5) where the loop is eliminated by matrix 
inversion. The simplicity of the input-output concept is appealing, but this 
should not detract attention from the controllability and observability concept, 
which requires that the state is also considered. To investigate stability, the 
matrix inverse is arranged in the form of the classical adjoint. 

[ SI-A] = adj [ SI-A] / ISI-A 1.  ( 6)  
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Figure I.State-space flow diagram with vector feedback by Y 
( U  and Z are the input and the output vectors, respectively). 

y ( 0 )  

INITIAL 
STATE 

Z 
OUTPUT 

U INPUT 

Figure 2. State-space flow diagram for a third-order system 
(input and output are scalars) .  

A l l  zeros are distributed among the elements of the adjoint, while all 
poles a r e  collected in the determinant. Pole-zero cancellations a r e  possible. 

Disregarding the time domain result and discussing stability in the 
frequency domain only, we become immediately involved in the details of 
pole-zero cancellations. Stability is certain if all roots of the determinant 
are stable, but the necessity is still in question. 

The ne.cessity can be demonstrated by analyzing the row vector, 
y( 0) adj[sI-A] , where A is assumed to represent a system in the phase space. 
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Matrix A is then a companion matrix (Frobenius matrix) , which results in 
an adjoint in which each element within any column has roots that differ from 
element to  element. Any initial state y(  0) combines these elements in a linear 
fashion and thus produces any desirable zeros for the components of the vector 
y( 0) adj [SI-A J . Consequently, cancellations become a special case requiring 
certain initial states. But stability should hold for any initial state (or input) , 
and we conclude that the roots of the determinant bI-A I are not only sufficient 
but also necessary for representing the poles of the total system. 

An approach similar to the state-space case is shown in the following 
sections; for example, the interpretation of the matrix [ SI-A] is applied, 
but the elements have poles added. 

CONTROLLABILITY AND OBSERVABIL ITY  

The controllability and observability (C&O) concept poses a well-defined 
question about obtaining insight into a system from outside. The controllability 
allows stimulation of all states of a system through its input, and the observa­
bility guarantees that all states can be obtained from output data. More details 
on definitions can be found in References 18, 19,  and 22. 

If we assume that matrix A of equation ( I )  is a diagonal matrix A , 
the C & O  concept results in the simple mathematical statement that the columns 
of B and the rows of C must match with the dimensions of the state vector y. 
The C&0 criterion for nondiagonal matrices A is more complicated, but the 
simple case is sufficient to illustrate the role that the C&O concept plays in 
relation to the stability problem. 

Although it seems very contradictory to discuss the "controllability and 
observability" of an unstable system, the C&0 concept permits such situations 
because it does not res t r ic t  the A matrix. This matrix has the eigenvalues at 
its diagonal, and unstable eigenvalues a r e  not ruled out. The C & O  concept 
of unstable systems means only that the unstable system can be kept under 
"control" with a suitable input, which in turn requires an output that "observes" 
all states such that any runaway can be detected and properly counteracted. -

This, however, is not a stability criterion; it is a classification criterion that 
selects from the class  of unstable systems the candidate systems that can be 
stabilized by adding an external feedback device. 
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Considering systems solely composed of stable subsystems, the C&0 
concept is of no consequence below the subsystem level. Gilbert [31]has 
shown the partitioning of a system into the following four subsystems: 

i. Uncontrollable and unobservable (isolated) . 
2. Uncontrollable but observable (partially connected) . 
3. Controllable but unobservable (partially connected) . 
4. Controllable and observable. 

If those four subsystems a re  stable, the total system will be stable 
because isolation ( i) and partial connections ( 2  and 3) obviously will not affect 
the overall stability. When the stability of the four subsystems is not clear, 
further decomposition into stable subsystems could be performed for a stabil­
ity analysis. The dimensions a r e  reduced by eliminating non-C& 0 parts at  
the stable subsystem level, thus concentrating on stability-sensitive parts. 

STABLE MATR ICES 

The assumption that a system consists of stable subsystems is not only 
practical from the engineering standpoint, but also proper for general applica­
tions. Most subsystems, such a s  elastic structures, electrical filters, or 
hydraulic components, a r e  stable. If the stability status should be unclear o r  if 
a subsystem should be unstable because of some regenerative features, then a 
further decomposition will always lead to stable subsystems o r  at the worst to 
"drift components, '' which a re  components with poles at the origin. 

The state-space approach is reached when the decomposition is carried 
all the way to the elements of a system in which redundant elements a re  lumped 
together. However, the state-space method should be considered only a s  a 
last resor t ;  the dimensions could be prohibitive. Jn other words, it is more 
economical to use stable subsystems a s  building blocks for a stability analysis 
whenever possible. The following strategy is recommended. 

I.Divide the total system into stable subsystems. 

2. Discard the non-C&O part at  each stable subsystem level. 
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3. Keep the order of the subsystems as high as stability permits. 

4. Represent the subsystem at the scalar  level by stable transfer 
functions. 

5. Collect these transfer functions in matrix formats. 

Having followed this outline, we obtain vector input-output relations 
(Fig. 3 ) .  

S 

-
SYSTEM MATRIX 

Figure 3. Flow diagram of a three-dimensional system, 
S, mapping the input, U, into the output, Z. 

[UIU2. ..u n 1 	 . .  = [ Z I Z , .  ..Zml (7 1. .  . .  

which can be reduced to US = Z. 

The initial conditions in equation ( 7) a r e  neglected because their 
influence diminishes with time since we have only stable subsystems. Matrix 
S is defined as stable i f  all the roots of the denominators D are stable. Theik 
matrix is therefore unstable i f  a t  least one D is unstable.

ik 

Considering an a r ray  of impulses, U = [tu ,, CY . . CY ..CY ,I, as inputs, 
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the components of the output vector, Zi, become linear combinations of the 

columns of S. 

zi = E a k.Nki/D ki = N ~ / D ~ .  
6 

The factors of the common denominator, D.1 = II Dki' generally will not 

cancel with the numerator since elements N
ki

./D 
ki 

a r e  all  different and are  

linearly combined by the a . I s  in an arbitrary way. Therefore, the stability
1 


within system S is completely described by denominators of each element. 

STABLE OPERATIONS 

The decomposition into stable subsystems is based on several matrix 
operations that preserve the property of stable matrices. The operations a re  
simple algebraic relations but a re  discussed because of their importance. If 
2 denotes the set of stable systems and {S, SI,S2} C 2  , the following theorems 
apply 

I.Addition SI+ S2 E2 

2. Mtttrix product S S2 � 2  

3. Adjoint adjS E 2 

4. Determinant 1sI �  2 

Only additions o r  multiplications, o r  both, a r e  applied to form new 
matrix elements. The common denominator of any new element is the product 
of stable denominators of previous elements, and therefore the new elements 
must be stable again. 

When stable, the roots of the newly-formed numerators could cancel 
some of the roots of the denominator ( a  very unlikely coincidence) ;when 
unstable, they could not cancel any roots of the denominator because the 
denominator is stable. In any case, the numerators do not contribute to the 
stability property of the stable operations. 
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MATRIX INVERSION 

To obtain analytical maneuverability, one more operation, the matrix 
inversion, must be added. This operation does not belong to the category 
given in the previous section because it could produce instability. The inverse is 
presented similarly to the state-space approach by the adjoint. 

The adjoint and the determinant a r e  stable a s  shown previously; however, 
the stability of the inverse of the determinant must be investigated (for example, 
by a Nyquist plot about the origin) . Since the poles of IS I a r e  stable, the 
encirclements equal the number of unstable zeros [ 32, 331. Stable zeros of 
IS I ensure the stability of S". This is definitely a sufficient condition, but the 

necessity is still in question because of possible cancellations between the zeros 
of adjS and IS I .  

However, the cancellations can be prevented by rearranging system S 
with a similarity transformation and by considering an impulse array a s  an 
input. F i r s t  a system is described where input U is mapped by the system,

0

s-I, into an output, z . 

0 


u s-I= z . 
0 0 


Then the input and the output a r e  equally transformed by a constant 
nonsingular matrix, T . 

Substituting equation ( 11) into equation ( 10) yields 

and we find a similar system, V. 

V-' = adjV/ IV I = T{adjS}T"/ IS I .  

i o  
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Note that the determinants are alike ( IV I = IS I analogous to a similarity 
transformation); however, the adjoints a r e  different. The transformation, T, 
can be used to f i l l  out at least one column of adjV with elements of different 
zeros if adjS does not already satisfy this condition. 

Let us assume one column of adjv, having obtained the structure 
rF 


Then, we take an impulse array a s  an input, 

u = [ai ,  Q2,.  .. nl 

and form the product, 

UadjVk = 7 Q! iNik/D ik = Nk/D k' 

The k'th output component is now 

zk = N ~ / { D ~ I s  I}. 

The component, Z
k' 

indicates whether a cancellation between the zeros 

of Nk and IS I is possfble. First, we discard Dk' which is the common 

demoninator of equation ( 17). Al l  the roots of D
k 

must be stable a s  initially 

assumed. Also, the poles of IS  1 must be stable (see Stable Operations section). 
But the roots of Nk can be freely chosen by equation (17) where different 

Polynomials, Nik{nJ Qk}ai, ( a i  means i excluded) are linearly combined by 

any impulse amplitude, Q! 
i' 

selected. Therefore, it is always possible to find 

an input (equation ( 1 6 ) )  which prevents cancellation of the roots of Nk and the 

zeros of IS I .  

Since stability should not depend on a particular distribution of test 
impulses at the input, we must conclude that the zeros of I S  I are not only 
sufficient, but also necessary for a stability criterion of a system, S", where 
the subsystems or elements are stable. 
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The necessary and sufficient stability conditions for matrix inversions 
are S E 2 andRe  {s: ~ S ( S )I = O }  < 0. 

STABLE MATRIX FORM 

It is always possible to arrange a constant-gain system into a stable 
matrix form (SMF) . The SMF has matrices with stable transfer function 
elements permitting or resulting from stable .operations a s  outlined previously. 
A crucial operation is the matrix inversion that represents the stability effects 
of feedback, which occurs in unilateral system arrangements, and of series (o r  
parallel) connections, which occur in bilateral system structures. Necessary 
and sufficient conditions a r e  ( i) the decomposition of constant-gain systems into 
SMF and ( 2 )  the inclusion of any feedback parts into the stability analysis by a 
matrix inversion. 

Before we delve further into details, some remarks on the state-space 
approach are in order. The state space requires a complete knowledge of the 
system. Measurements of the input and the output will only reconstruct the 
C&O part; but at a certain point, an assumption must be made that the system 
is completely described [ 271 . A wrong assumption could result in instability 
and possibly damage. 

For the proposed SMF method, a complete knowledge of the system is 
also necessary. The SMF results in fewer dimensions than the state space. 
Actually the reductions are tremendous, but there is a trade-in; for the dimen­
sional reduction, complicated transfer functions must be accepted a s  matrix 
elements. The par t  of the system requiring stability investigation must be 
represented by the SMF, and the consequences of wrong assumptions a r e  the 
same a s  for  the state space. The SMF lends itself to stabilizing a system in 
parts [34]. 

Any constant-gain system with stable subsystems can be Laplace 
transformed and presented in the following stable matrix form. 

us = ZR. 

The initial conditions a re  neglected because stable subsystems will 
eventually dampen out any transience of the initial state. The row vectors, 
U and Z, are the assumed input and output, respectively; S is one system part, 
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and R is the other. If the equations a re  properly arranged, matrix R can be 
inverted .and Z can be expressed explicitly. 

Stability can be found by evaluating the zeros of the determinant IRI. 
However, if  the inputs and outputs a r e  mixed, a singular matrix R could result .  
Then we must convert the system by partitioning the variables and matrices 
according to the input (index 1, equation ( 21) ) and the output (index 2, equa­
tion ( 2 1 ) ) .  

From this, a nonsingular matrix is obtained on the right. 

However, having succeeded in producing a nonsingular matrix, R, on 
the right does not mean that U is an input. An input must f i t  the physical en­
vironment; the causality question is involved here and must be observed 
especially when considering disturbance vectors a s  an input. Therefore, some 
interpretation is required before a vector is accepted a s  an input. Similar 
considerations apply to the output. For example, if we consider the stability 
of a body, it is understood that an external force is the input (disturbance) and 
the output of interest is the displacement. Often an exchange of inputs and out­
puts stabilizes unstable systems and vice versa. This situation can also be 
interpreted such that the choice of variables implies certain boundary conditions. 

POGO PHENOMENON 

The stability analysis is now applied to the pogo phenomenon, which was 
experienced within the past  10 years on practically all large liquid propellant 
rockets: the At las ,  Thor, Titan, and finally the Saturn V. The rockets usually 
oscillated with their ends moving against each other, like a youngster does on a 
pogo stick. The comparison led to the te rm "pogo effect." Falling in this cate­
gory are, for example, the pressure regulator feedback on the Atlas and the 
propulsion to structure feedback on the Thor, the Titan, and the Saturn V. 
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The analysis demonstrated permits a survey of the stability status in a 
wide frequency range, but it is restricted to a constant-gain model, which 
cannot reproduce the limit cycle effect observed in flight. Most likely, the 
limit cycle was caused by a tuning/detuning of time variable resonances 
(Saturn V first flight stage, S-IC) o r  a nonlinear loop gain that decreased 
at higher amplitudes (Saturn V second flight stage, S-11), or possibly 
both. In most cases, the pogo oscillations had a football-shaped envelope, 
building up slowly like a slightly unstable linear system before damping out. 

Before presenting the problem in detail, a simplified model (Fig. 4) is 
discussed. This model consists of the essential ingredients of the pogo phenom­
enon: propellent mass, cavitation stiffness a t  the engine pump inlet, orifice 
effect of pump inlet, vehicle mass, and thrust sensitivity to propellant pressure 
at the pump inlet. 

The pogo loop can best be described through the involved components, 
starting with a small  thrust change, T ,which forces the vehicle and propellant

S 
masses to accelerate. The accelerated propellant mass,  here the liquid oxygen 
in the tank, exerts a pressure force onto the cavitation stiffness, K which 

S' 

transmits it to the pump inlet. This pressure force affects the propellant flow 
and consequently the combustion in the rocket motor. Therefore, the thrust 
changes and the whole process s tar ts  again in a feedback fashion. 

The sensitivity of the propulsion system is simply described by a con­
stant gain, E, which relates the propellant force, P 

Sa 
and thrust, T 

S' 
by 

P E = T . Actually, all  variables represent small variations about a quiescent
S S 

point. Also an external disturbance force, f, a t  the thrust point is introduced. 
A closed loop equation results: 

f
P =  

S m1 + -- E + S-
m + 5'-

m ( 23) 

m D K
S S S 


This equation gives the response of P to f. The stability depends on the 
S 
mconstant, 1+ - - E, which must be positive; that is, E is limited by the stabil­

m 
S 

ity criterion, 

mE < l + - . m 
S 
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Figure 4. Simplified pogo loop model. 
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The gain E should be less than I if the mass  ratio of vehicle structure 
to liquid oxygen is assumed to  be negligible. Al l  Saturn V vehicles have an E 
above 1, leading to a potential pogo stability problem. However, it must be 
emphasized that this analysis is overly simplified and is given for illustration 
purposes only. A reduction of E below 1 would be ideal, but for practical rea­
sons stability was attained by placing a helium accumulator near the LOX pump 
inlets where it attenuated propellant pressure oscillations 151. The pogo 
oscillations were successfully eliminated for the first flight stage of the Saturn 
V vehicles beginning with the first moon flight, the AS-503. 

The following discussion is restricted primarily to the vector feedback 
problem; actual derivation details of the pogo model can be found in a recent 
publication [ 11] . 

POGO WITH VECTOR FEEDBACK 

The pogo loops of the Saturn V first and second stages (S-IC and S-11) 
are a case of multivariable feedback in which the feedback variable is not a 
scalar but a vector. The feedback is given by a matrix with plenty of cross­
coupling as shown in Figure 5. The elements of the matrix a re  transfer functions, 
which are more complicated than the single s in the diagonal elements of a state 
transition matrix (equation ( 6)  ) . 

The linearity and the time invariance of the used model permitted the 
inclusion of many resonances [ 301, which a r e  relatively dense in the pogo case 
(1 resonance/i Hz)  ., The unstable buildup of actual pogo oscillations resembles 
oscillations of slightly unstable constant-gain systems, which seem to justify an 
approximation by a constant-gain model. The nonlinearities a r e  assumed 
monotonic without any abrupt changes a s  in the case of bang-bang control sys­
tems. 

Lack of knowledge in treating matrix feedback cases has often led to 
simplifications that caused doubt about the validity of the analysis. For example, 
Nyquist plots a r e  sometimes obtained by opening one loop only while other loops 
remain closed. The interpretation of the stability margins then becomes 
obscured, mainly because of the unpredictable influence of the closed loops in 
the "open loop system. " The stability status of the closed loops must then be 
analyzed by additional Nyquist plots o r  root-finding routines, thus producing 
several stability margins that cannot be combined into a single term. Variation 
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Figure 5. : Pogo loop flow diagram with eight vehicle resonances. 

of parameters can help to find the stability limit, but this method still does not 
preclude a possible pole-zero cancellation if  only one open loop plot is evaluated. 

The stable matrix form is used here to analyze the pogo stability of the 
Saturn V first stage (S-IC) . Essentially two thrust groups can move relatively 
independent because of sufficient flexibility within the thrust frame. One thrust 
group is the inboard engine; the other is the sum of four outboard engines. This 
is a typical case of vector feedback as described in SMF by the equation, 

DS = PR. (25) 

The closed loop concept is applied with the disturbance vector, D, as 
an input and.the feedback vector, P, as an  output; S and R are matrices in  SMF. 
The input vector is D = [D  D 3 where D

0 
represents an external force for all0 1  

17 




outboard engines, and D
I is an external force for  the inboard engine. These 

engine points do not coincide with vibration nodes and therefore permit an 
excitation of all longitudinal vibration modes. External force inputs are proper 
because boundary conditions are thus preserved. The output vector is 

p=[pLOpFO 
P

LI
P

FI] where the indexed P's are propellant pressure forces 

for LOX with index L, fuel with index F, outboard with index 0, and inboard 
with index I. R and S are stable matrices defined as follows: 

L 

-
A ykO 

0 0  0 A yi?O
+ [ c o  o c0 0  Go O 0  O 

0 0  0 I GI yb 
A Y'

LI

*y;;.I 

yi 
i 

The Q's are 2 by 2 matrices of the rocket engine pump flow versus 
pressure forces. The index rules a re  the same as for the pressure force 
vector, P. The elements, q, are stable transfer functions, thus satisfying the 
SMF requirement. The q's are maximally second/fourth-order quotients. 

1 


I
Q = -

S 

The K's are 2 by 2 matrices of the cavitation stiffnesses, 
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A nominal cavitation matrix is defined a s  KN' 

K
LNKN =[ 

0 	

O I - ( 30) 
KFN 

The CIS are 2 by 2 matrices coupling pressure forces to structural 
forces. 

C = I - ( Q + K " ) K  N' 

The GIs are 2 by i matrices relating propellant pressure forces to 
thrust. The elements g a re  stable transfer functions which a re  maximally 
second /third-order quotients. 

G = 

The A Y ' s  a r e  longitudinal mode shapes with the same index rules a s  for 
the pressure vector P; for example, index LO means outboard LOX fluid dis­
placement versus the outboard engine; 0 refers  to the outboard engine only. 
Each A Y is actually a column vector, one component per longitudinal resonance; 
AY' is the transpose. The same holds for the Y ' s .  

The is ,a diagonal matrix consisting of one rigid body mode and 
30 longitudinal resonances with the generalized mass mi,  critical damping Si, 
and circular frequency u+. Note that all resonances a r e  stable second order 
systems and that the rigid body mode has no effect because corresponding com­
ponents of AY's a r e  zero. 

i
521111 0 0 
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.. _.._. .. .. 

In reviewing equations ( 28) through (33), we find building block matrices 
with only stable elements. These matrices are then combined by stable oper­
ations in equations (26)and (27), thus representing a true SMF structure. The 
final step is the inversion of R. 

DS adjR/IRI = P . ( 34) 

Note that R is a 4by 4matrix and that the matrices of equation (26) are 
from left to right 4by 4, 4by 6, 6 by 30, 30, by 30, and 30 by 4. 

Now a Nyquist plot about the origin from the determinant IR I is 
computed. The number of the clockwise encirclements equals the number of 
unstable zeros of IR I. 

Two examples are given for the first flight stages of two Saturn V 
vehicles a t  120 -s flight time: the AS-502, which is linearly unstable at 5 Hz, 
and the AS-504, which is stabilized by a helium accumulator a t  the LOX pump 
inlets of the outboard engines (Figs.  6 through 9 ) .  Figures 6 and 8 a r e  the 
nominal cases and Figures 7 and 9 show the plots for half of the LOX pump/ 
thrust gain ( gL/2) , which is one of the most sensitive parameters. Such 

variations are used to find the gain margin; for example, by linear extrapolation 
we find that the 5-Hz range is approximately 5 dB unstable for AS-502, but the 
same frequency range becomes 6 dB stable for  AS-504. The accuracy of the 
margin prediction can be increased by plotting new gain cases in an iterative 
fashion. Thus we can find margins with any degree of precision, while the 
plots always indicate exactly whether the system is stable or unstable. 

CONCLUSIONS 

Al l  constant-gain systems can be described by the stable matrix form. 
Ordinary algebraic operations always permit unlimited decompositions such that 
stable subsystems are obtained. In many respects the approach resembles the 
state-space form that is actually reached when the decomposition is carried 
down to the essential elements of a system. The dimensional savings a r e  
appreciable when compared with the state space that appears now as the last 

1 The programing effort of Mr .  W. F. Crumbley of MSFC's Computation 
Laboratory is gratefully acknowledged. 
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210° 

Figure 6. Saturn V first flight stage of AS-502 
mission at 120-s flight time. 

resor t  for a stable structure. The decomposition into stable subsystems r ids  
the system of the noncontrollable and nonobservable parts at the subsystem 
level. 

The method is generally applicable to the stability analysis of vector 
feedback, which is represented by a matrix inversion that leads to the eval­
uation of a determinant by a Nyquist plot about the origin. The necessary and 
sufficient conditions are relatively simple, making this method very practical 
for the analysis of large-order systems as exemplified by the stability analysis 
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Figure 7. Saturn V first flight stage of AS-502 
mission with 1/2 LOX pump/thrust gain. 

of the pogo phenomenon of the Saturn V first stage in which eigenvalues 
numbered over a hundred. Only one Nyquist plot is required and stability is 
verified directly from the encirclements of the origin; this is very suitable 
for sensitivity and parameter studies. The stable matrix form can be used 
a s  a general representation of multivariable constant-gain systems. 

George C. Marshall Space Flight Center 
National Aeronautics and Space Administration 

Marshall Space Flight Center, Alabama 35812, December 1969 
933-50-00-0000 
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Figure 8. Saturn V first flight stage of AS-504 mission a t  
120-s flight time. 
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Figure 9. Saturn V first flight stage of AS-504 mission 
with 1/2 of LOX pump/thrust gain. 
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